Все, эти уже нам знакомые входы и выходы, работают точно так же, как и в самом RS-триггере. То есть для нормальной работы на входы R и S должен быть подан сигнал логической единицы. При поступлении сигнала логического нуля на вход S, триггер устанавливается в единичное состояние (это, когда на выходе Q - сигнал логической единицы, а на выходе Q - сигнал логического нуля). При поступлении на вход R сигнала логического нуля, триггер сбрасывается в нулевое состояние (на Q - ноль, а на Q - единица).
Кроме описанных выше входов, D-триггер имеет еще два дополнительных. Это вход данных D (именно он дал название триггеру) и вход синхронизации C. Вход C служит для синхронизации записи логического сигнала поступающего на вход D. Происходит это следующим образом: на вход D подается некий логический уровень. Например, логическая единица. Затем на вход синхронизации подается синхронизирующий импульс. По заднему фронту этого импульса происходит запись сигнала со входа D в триггер. Триггер переходит в единичное состояние. Точно так же, если на вход D триггера ноль подать логический ноль то по спаду синхроимпульса он запишется в триггер.
Как следует из вышеизложенного, типовой D-триггер, по сути дела, может выступать в роли как RS-триггера, так и собственно в роли D-триггера. При этом функция RS-триггера имеет приоритет. То есть при поступлении, например, на вход установки (S) низкого логического уровня, триггер установится в единичное состояние, не зависимо от состояния сигналов на входах C или D. Тот же принцип приоритета распространяется и на вход R.Задний фронт импульса.
В данном случае под задним фронтом следует понимать момент перехода сигнала на входе C с единичного уровня в нулевой. Переход с нулевого уровня в единичный, называется передним фронтом импульса. Иногда, вместо понятия "передний фронт" импульса употребляют термин "фронт" импульса. При этом вместо понятия "задний фронт" импульса, говорят "спад" импульса. Вход C в данном случае работает не по уровню входного сигнала, как все остальные входы, а срабатывает в момент перехода из одного уровня в другой. Поэтому, такой вход называется импульсным. Импульсный вход, в соответствии с ГОСТом изображается со стрелкой у основания. Так же напомню, что инверсный выход (так же, как и инверсный вход) изображается с кружочком.
Внутреннее строение D-триггера гораздо сложнее, чем, к примеру, RS-триггера. Существует много разных схем его реализации. Ниже приведена одна из таких схем.
Схема триггера двухступенчатая. Первая ступень состоит из двух RS-триггеров (DD1, DD2 и DD3, DD4). Оба триггера замкнуты в кольцо обратной связи (выход DD2 соединен с входом DD3, а выход DD4 с входом DD1). На элементах DD5 и DD6 собрана вторая ступень триггера.
Если на входе C присутствует сигнал логического нуля, происходит запись информации в первую ступень триггера. При этом, в зависимости от сигнала на входе D, изменяется состояние сигналов на выходах элементов DD1 и DD4. На выходах DD2 и DD3, напротив, в этом режиме постоянно присутствует уровни логической единицы.
Если на вход C приходит сигнал логической единицы, то триггеры первой ступени, в зависимости от их состояния в момент прихода этого самого входного импульса, замирают в одном из двух возможных состояний:
Выводы элементов | DD1 | DD2 | DD3 | DD4 |
Первый вариант | 1 | 0 | 1 | 0 |
Второй вариант | 0 | 1 | 0 | 1 |
Одновременно происходит перезапись сигнала из триггеров первой ступени в триггеры второй. Перезапись информации из первой ступени во вторую происходит в момент смены уровня сигнала на входе C с низкого на высокий (то есть, по переднему фронту). Именно поэтому этот вход считается инверсным. Инверсный потому, что в исходном варианте (см. начало этой статьи) запись происходит по заднему фронту. А этот самый исходный вариант считается базовым. Однако, и новую схему легко привести к первоначальной. Достаточно только поставить инвертор по входу C, и мы получим первоначальный результат.
D-триггер широко применяется в цифровой технике. На его основе строятся такие элементы, как счетчики и регистры. Ниже приведена схема включения D-триггера в счетном режиме.
Не забываем, что для нормальной работы на входы R и S триггера должен быть подан сигнал логической единицы. Для упрощения схемы эти цепи не показаны. Как видно из схемы, инверсный выход триггера (Q) соединяется с его же входом D. На вход синхронизации подаются импульсы некоторой опорной частоты. На выходе формируется сигнал с вдвое меньшей частотой следования.
Рассмотрим работу этой схемы подробнее:
Допустим, что в начальный момент времени D-триггер находится в нулевом состоянии. Это значит, что на его инверсном выходе присутствует сигнал логической единицы. Этот сигнал поступает на D-вход того же триггера. Однако это пока не изменяет его состояние. В момент спада сигнала на входе C произойдет запись в триггер. Он перейдет в единичное состояние. На инверсном выходе появится сигнал логического нуля. В таком состоянии триггер будет находиться до следующего импульса на входе. В момент спада следующего тактового импульса в триггер запишется ноль. В результате от каждого тактового импульса триггер будет переключаться поочередно, то в ноль, то в единицу. Ниже изображены сигналы на входе и на выходе схемы:
Как хорошо видно из рисунка, частота сигнала на выходе схемы ровно в два раза меньше частоты входного сигнала. Поэтому такая схема включения D-триггера называется делителем. Можно соединить последовательно любое количество делителей. Таким образом, в зависимости от числа последовательно соединенных триггеров, можно создать делитель с коэффициентом деления 2, 4, 8, 16, 32, 64 и т. д. Приведем пример такого делителя:
По другому, такая схема называется двоичным счетчиком импульсов. Недостаток такой схемы - невозможность задать любой (не кратный числу 2) коэффициент деления. Для этого существуют другие, более сложные схемы.Источник: http://www.mirmk.net
1 комментарий:
почему передача сигнала от входа D идет только при спаде синхроинпульса, а не скажем при его переднем фронте?
Отправить комментарий